Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
J Virol Methods ; 322: 114831, 2023 Dec.
Article in English | MEDLINE | ID: mdl-37838083

ABSTRACT

Vaccine-induced protection against tick-borne encephalitis virus (TBEV) is mediated by antibodies to the viral particle/envelope protein. The detection of non-structural protein 1 (NS1) specific antibodies has been suggested as a marker indicative of natural infections. However, recent work has shown that TBEV vaccines contain traces of NS1, and immunization of mice induced low amounts of NS1-specific antibodies. In this study, we investigated if vaccination induces TBEV NS1-specific antibodies in humans. Healthy army members (n = 898) were asked to fill in a questionnaire relating to flavivirus vaccination or infection, and blood samples were collected. In addition, samples of 71 suspected acute TBE cases were included. All samples were screened for the presence of TBEV NS1-specific IgG antibodies using an in-house developed ELISA. Antibodies were quantified as percent positivity in reference to a positive control. For qualitative evaluation, cut-off for positivity was defined based on the mean OD of the lower 95% of the vaccinated individuals + 3 SD. We found significantly higher NS1-specific IgG antibody titers (i.e., quantitative evaluation) in individuals having received 2, 3, or 4 or more vaccine doses than in non-vaccinated individuals. Similarly, the percentage of individuals with a positive test result (i.e., qualitative evaluation) was higher in individuals vaccinated against tick-borne encephalitis than in unvaccinated study participants. Although NS1-specific IgG titers remained at a relatively low level when compared to TBE patients, a clear distinction was not always possible. Establishing a clear cut-off point in detection systems is critical for NS1-specific antibodies to serve as a marker for distinguishing the immune response after vaccination and infection.


Subject(s)
Encephalitis Viruses, Tick-Borne , Encephalitis, Tick-Borne , Flavivirus Infections , Viral Vaccines , Humans , Antibodies, Viral , Antibody Formation , Encephalitis, Tick-Borne/prevention & control , Immunoglobulin G , Vaccination
2.
New Phytol ; 236(1): 182-194, 2022 10.
Article in English | MEDLINE | ID: mdl-35715973

ABSTRACT

Eukaryotic genomes contain a vast diversity of transposable elements (TEs). Formerly often described as selfish and parasitic DNA sequences, TEs are now recognised as a source of genetic diversity and powerful drivers of evolution. However, because their mobility is tightly controlled by the host, studies experimentally assessing how fast TEs may mediate the emergence of adaptive traits are scarce. We exposed Arabidopsis thaliana high-copy TE lines (hcLines) with up to c. eight-fold increased copy numbers of the heat-responsive ONSEN TE to drought as a straightforward and ecologically highly relevant selection pressure. We provide evidence for increased drought tolerance in five out of the 23 tested hcLines and further pinpoint one of the causative mutations to an exonic insertion of ONSEN in the ribose-5-phosphate-isomerase 2 gene. The resulting loss-of-function mutation caused a decreased rate of photosynthesis, plant size and water consumption. Overall, we show that the heat-induced transposition of a low-copy TE increases phenotypic diversity and leads to the emergence of drought-tolerant individuals in A. thaliana. This is one of the rare empirical examples substantiating the adaptive potential of mobilised stress-responsive TEs in eukaryotes. Our work demonstrates the potential of TE-mediated loss-of-function mutations in stress adaptation.


Subject(s)
Arabidopsis , Adaptation, Physiological/genetics , Arabidopsis/genetics , DNA Transposable Elements/genetics , Droughts , Evolution, Molecular , Hot Temperature
SELECTION OF CITATIONS
SEARCH DETAIL
...